101. Preparation of α-Bromo- and α-Chlorocarboxylic Acids from α-Amino Acids¹)

by George A. Olah, Joseph Shih and G.K. Surya Prakash

Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA. 90089

(16.II.83)

Summary

Diazotization of a-amino acids in 48:52 (w/w) hydrogen fluoride/pyridine along with excess of potassium halide results in the corresponding a-halocarboxylic acids in good to excellent yields (*Table 1* and 2).

Pyridinium polyhydrogen fluoride (hydrogen fluoride/pyridine 7:3 (by weight)) a convenient substitute for anhydrous hydrogen fluoride has gained importance in a variety of fluorination reactions, and its application in organic synthesis has been reviewed [2]. Recently we have shown [3] that anchimerically assisted rearrangements observed in the dediazotizative fluorination of *a*-amino acids with 7:3 (*w/w*) hydrogen fluoride/pyridine reagent is substantially or fully suppressed by using the less acidic 48:52 (*w/w*) hydrogen fluoride/pyridine reagent.

Now we wish to report that diazotization of *a*-amino acids in the same less acidic media along with excess of potassium halide results in the corresponding *a*-halocarboxylic acids in good to excellent yields (*Table 1* and 2).

a-Amino acid	R	Yield ^a) [%]	B.p. [°/Torr] ^b) (m.p. [°])	
Alanine	CH ₃	77	84-87/1.0	[4]: 65-67/0.5-1.0
a-Aminobutyric acid	C_2H_5	86	95-98/1.0	[4]: 83-86/1.0-1.5
Valine	$i-C_3H_7$	81	104-108/0.7	[4]: 83-87/1.0-1.5
Phenylalanine	C6H5CH2	81	(50)	[5]: (52)
Isoleucine	sec-C4H9	80	112-115/1.0	[4]: 43-95/0.5-1.0
Threonine	CH ₃ CH(OH)	48	(84-86)	[5]: (87)

Table 1	. Preparation of	`a-bromocar	boxylic acia	ls from a	-amino acids

^a) Isolated products showed characteristic IR., ¹H-NMR. and ¹³C-NMR. data.

b) Boiling and melting points are uncorrected.

1) Synthetic Methods and Reactions, Part 117. For Part 116, s. [1].

a-Amino acid	R	Yield ^a) [%]	B.p. [°/Torr] ^b) (m.p. [°])	
Alanine	CH ₃	74	71-72/0.8	[4]: 49-54/0.5-1.0
a-Aminobutyric acid	C_2H_5	85	88-89/0.7	[4]: 76-78/1.0-2.0
Valine	i-C ₃ H ₇	84	98-99/0.8	[4]: 70-80/1.0-2.0
Phenylalanine	C6H5CH2	87	158-159/1.0	[5]: 170-174/2.3-3.5
Isoleucine	sec-C ₄ H ₉	82	105-109/1.0	[4]: 88-90/1.0-2.0
Threonine	CH ₃ CH(OH)	36	(60-64)	[5]: (62–63)

Table 2. Preparation of a-chlorocarboxylic acids from a-amino acids

^a) Isolated products showed characteristic IR., ¹H-NMR, and ¹³C-NMR, data.

b) Boiling and melting points are uncorrected.

$$\begin{array}{ccc} R-CH-COOH & \frac{NaNO_2}{HF/Py, KX} \longrightarrow R-CH-COOH \\ | \\ NH_2 & X \\ (X=Cl, Br) \end{array}$$

Whereas the reaction works well with chloride and bromide nucleophiles, with added KI, however, rather complex reaction mixtures are formed, and no pure *a*-iodocarboxylic acids could be isolated. In the case of tyrosine and added KCl or KBr, a mixture of fluoro and chloro, and fluoro and bromo products, respectively,

a-Haloacid	СООН	C(a)	$C(\beta)$	Others
CH ₃ CH(Br)COOH	176.7	39.3	21.3	
CH ₃ CH(Cl)COOH	176.3	52.1	21.3	
CH ₃ CH ₂ CH(Br)COOH	176.3	46.9	28.0	11.7 (CH ₃)
CH ₃ CH ₂ CH(Cl)COOH	176.1	58.4	28.1	10.3 (CH ₃)
(CH ₃) ₂ CHCH (Br)COOH	176.0	53.9	32.0	20.0, 19.7 (CH ₃ ^c))
(CH ₃) ₂ CHCH(Cl)COOH	175.8	63.9	32.4	19.5, 17.7 (CH ₃ ^c))
CH ₃ CH ₂ CH(CH ₃)CH(Br)COOH	175.9	52.4	38.0	26.1 (CH ₃ CH ₂), 16.2 (CH ₃ CH ₂), 10.6 (CH ₃)
CH ₃ CH ₂ CH(CH ₃)CH(Cl)COOH 3_2	175.9	62.7	38.0	24.8 (CH ₃ CH ₂), 15.9 (CH ₃ CH ₂), 10.8 (CH ₃)
$4 \left(\bigcirc_{5}^{2} \right)_{6}^{1} - CH_{2} - CH(Br)COOH$	175.6	44.8	40.7	136.3 (C(1)), 129.2 (C(2), C(6)), 128.8 (C(3), C(5)), 127.5 (C(4))
$4 \left(\sum_{5}^{3} \sum_{6}^{2} \right)^{1} CH_{2} - CH(Cl)COOH$	175.5	57.3	40.8	135.5 (C(1)), 129.4 (C(2), C(6)), 128.7 (C(3), C(5)), 127.5 (C(4))
CH ₃ CH(OH)CH(Br)COOH	173.0	52.3	67.5	20.0 (<i>C</i> H ₃)
CH ₃ CH(OH)CH(Cl)COOH	171.2	62.7	68.4	19.4 (CH ₃)

Table 3. ¹³C-NMR. spectroscopic data of a-chloro- and a-bromocarboxylic acids^a)^b)

^a) Chemical shifts in ppm from tetramethylsilane.

b) In CDCl₃ solution at 24°.

^c) Prochiral.

were obtained. Otherwise the method seems quite general and should find use in the synthesis of a-bromo- or a-chlorocarboxylic acids from readily available a-amino acids.

Experimental Part

Preparation of the reagent. The pyridinium polyhydrogen fluoride (52% pyridine, 48% HF, by weight) was prepared by condensing 73 g (3.85 mol) of anh. HF into 79 g (1 mol) of pyridine at -78° in a polyolefin bottle as previously described [2] or by diluting the reagent HF/pyridine 7:3 with pyridine to achieve the appropriate concentration. *Caution*, sufficient care should be taken while working with this reagent as *HF can cause severe burns* [6].

General procedure for the preparation of a-bromo- or a-chlorocarboxylic acids. To 30 mmol of a-amino acid in 40 ml of above prepared pyridinium polyhydrogen fluoride and 60 mmol of KBr or KCl in a polyolefin bottle with good stirring at r.t. are added 4.14 g (60 mmol) of pre-dried NaNO₂ in 4 portions over a period of 10 min. Stirring is continued till the end of the reaction (48 h in the case of bromo and 72 h in the case of chloro acid). Then the mixture is quenched with 100 ml of ice/water and extracted with Et₂O (3 times 100 ml) in a polyolefin separatory funnel. The Et₂O layer is washed with sat. NaCl-solution (3 times 100 ml) and dried over anh. MgSO₄. The Et₂O layer on evaporation gives the crude product which is further purified by distillation or recrystallization. In the case of tyrosine and threonine a different workup procedure is employed; the mixture is directly extracted with Et₂O (3 times 100 ml), washed with sat. NaCl-solution (3 times 100 ml), dried over anh. MgSO₄ and evaporated to obtain the crude product. - ¹³C-NMR.: s. *Table 3*.

Support of our work by the National Institutes of Health and the National Science Foundation is gratefully acknowledged.

REFERENCES

- [1] G.A. Olah, A. Husain & B.P. Singh, J. Org. Chem., submitted.
- [2] G.A. Olah, J. T. Welch, Y.D. Vankar, M. Nojima, I. Kerekes & J.A. Olah, J. Org. Chem. 44, 3872 (1979).
- [3] G.A. Olah, G.K.S. Prakash & Y.L. Chao, Helv. Chim. Acta 64, 2528 (1981).
- [4] W. Gaffield & W. G. Galetto, Tetrahedron 27, 915 (1971).
- [5] 'Dictionary of Organic Compounds', 4th Edn., Oxford University Press, New York 1969.
- [6] C. M. Sharts & W.A. Sheppard, Org. React. 21, 192, 220 (1974).